summaryPSM.Rd
Extract information about fitted parametric survival models
summaryPSM(
x,
types = c("mean", "survival", "hazard", "cumhaz", "median", "rmst"),
t = NULL,
ci = FALSE,
se = FALSE
)
An object created by calling runPSM
A list of statistics to extract - see summary.flexsurvreg
for details
The time points to be used - see summary.flexsurvreg
for details
Should a confidence interval be returned - see summary.flexsurvreg
for details
Should a standard error be returned - see summary.flexsurvreg
for details
A data frame containing the following values
Model - The Model as specified in runPSM
model.type
ModelF - an ordered factor of Model
Dist - The distribution
DistF - an ordered factor of Dist
distr - as specified in runPSM
distr
Strata - Either Intervention or Reference
StrataName - As specified by int_name and ref_name respectively in runPSM
type - as defined by the types parameter see summary.flexsurvreg
for details
variable - "est", "lcl", "ucl", "se" respectively
time - either NA or the time the statistic is evaluated at
value - estimated value
require(dplyr)
require(ggplot2)
PFS_data <- sim_adtte(seed = 2020, rho = 0.6) %>%
filter(PARAMCD=="PFS") %>%
transmute(USUBJID,
ARMCD,
PFS_days = AVAL,
PFS_event = 1- CNSR
)
psm_pfs <- runPSM(
data = PFS_data,
time_var = "PFS_days",
event_var = "PFS_event",
strata_var = "ARMCD",
int_name = "A",
ref_name = "B")
#> Fitting common shape models
#> Fitting model exp
#> Fitting model weibull
#> Fitting model gompertz
#> Fitting model lnorm
#> Fitting model llogis
#> Fitting model gengamma
#> Fitting model gamma
#> Fitting model genf
#> Fitting separate shape models - intervention arm
#> Fitting model exp
#> Fitting model weibull
#> Fitting model gompertz
#> Fitting model lnorm
#> Fitting model llogis
#> Fitting model gengamma
#> Fitting model gamma
#> Fitting model genf
#> Fitting separate shape models - reference arm
#> Fitting model exp
#> Fitting model weibull
#> Fitting model gompertz
#> Fitting model lnorm
#> Fitting model llogis
#> Fitting model gengamma
#> Fitting model gamma
#> Fitting model genf
#> Fitting independant shape models
#> Fitting model exp
#> Fitting model weibull
#> Fitting model gompertz
#> Fitting model llogis
#> Fitting model gamma
#> Fitting model lnorm
#> Fitting model gengamma
#> Fitting model genf
summaryPSM(psm_pfs, types = c("mean","rmst"), t = c(100,2000)) %>%
filter(Dist == "Generalized Gamma", Strata == "Intervention")
#> # A tibble: 9 × 11
#> Model ModelF Dist DistF distr Strata Strat…¹ type varia…² time value
#> <chr> <ord> <chr> <ord> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 Separate - … Separ… Gene… Gene… geng… Inter… A mean est NA 206.
#> 2 Common shape Commo… Gene… Gene… geng… Inter… A mean est NA 206.
#> 3 Independent… Indep… Gene… Gene… geng… Inter… A mean est NA 206.
#> 4 Separate - … Separ… Gene… Gene… geng… Inter… A rmst est 100 88.0
#> 5 Separate - … Separ… Gene… Gene… geng… Inter… A rmst est 2000 206.
#> 6 Common shape Commo… Gene… Gene… geng… Inter… A rmst est 100 87.8
#> 7 Common shape Commo… Gene… Gene… geng… Inter… A rmst est 2000 206.
#> 8 Independent… Indep… Gene… Gene… geng… Inter… A rmst est 100 88.0
#> 9 Independent… Indep… Gene… Gene… geng… Inter… A rmst est 2000 206.
#> # … with abbreviated variable names ¹StrataName, ²variable
summaryPSM(psm_pfs, types = "survival", t = seq(0,2000,100)) %>%
ggplot(aes(x=time, y = value, color = StrataName, linetype = Model)) +
geom_line()+
facet_grid(~Dist)
summaryPSM(psm_pfs, types = "hazard", t = seq(0,5000,100)) %>%
ggplot(aes(x=time, y = value, color = StrataName, linetype = Model)) +
geom_line()+
facet_grid(~Dist) +
coord_cartesian(ylim = c(0,0.02))
summaryPSM(psm_pfs, types = "cumhaz", t = seq(0,5000,100)) %>%
ggplot(aes(x=time, y = value, color = StrataName, linetype = Model)) +
geom_line()+
facet_grid(~Dist) +
coord_cartesian(ylim = c(0,100))